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Environmental noise monitoring systems continuously measure sound levels without assigning these
measurements to different noise sources in the acoustic scenes, therefore incapable of identifying the
main noise source. In this paper a feasibility study is presented on a new monitoring concept in which
an acoustic pattern classification algorithm running in a wireless sensor is used to automatically assign
the measured sound level to different noise sources. A supervised noise source classifier is learned from a
small amount of manually annotated recordings and the learned classifier is used to automatically detect
the activity of target noise source in the presence of interfering noise sources. The sensor is based on an
inexpensive credit-card-sized single-board computer with a microphone and associated electronics and
wireless connectivity. The measurement results and the noise source information are transferred from
the sensors scattered around the measurement site to a cloud service and a noise portal is used to visu-
alise the measurements to users. The proposed noise monitoring concept was piloted on a rock crushing
site. The system ran reliably over 50 days on site, during which it was able to recognise more than 90% of
the noise sources correctly. The pilot study shows that the proposed noise monitoring system can reduce
the amount of required human validation of the sound level measurements when the target noise source
is clearly defined.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Environmental noise, defined as unwanted or harmful outdoor
sound created by human activities [1, Art. 3], can be generated
by traffic, industry, construction, and recreation activities [2, p.
12]. Airports, (wind) power plants, rock-crushing, shooting ranges,
and motorsport tracks are examples of noise sources for which
sound propagation over several kilometers is relevant.

One challenge in environmental noise monitoring is how to
make sufficiently comprehensive measurements both in time
domain and spatially. The changes in weather conditions have a
significant effect on monitored noise levels [3] and in order to
obtain most of the variations the noise has to be monitored for
extended periods of time [4–6]. Also, a single point noise measure-
ment is rarely representative for a whole neighbourhood and sev-
eral sensor locations are needed. Because of high costs of the
equipment and the amount of human resources needed, the relia-
bility, validity, and representativeness of environmental data is
usually unsatisfactory. Only a few reported scientific experiments
with uninterrupted noise data captured from each relevant loca-
tion over long periods of time exist [7–10].

The typical need for measurements is to monitor the noise
caused by a noise source (e.g. an airport or an industrial plant) in
a residential area. However, also other noise sources exist and
the captured noise level is usually a result of a combination of
the target and interfering sound sources: wind-generated, cars,
and birds being examples. Sound level meters used for noise mon-
itoring either capture sound levels or time domain noise data and
store the data locally – or nowadays more often – on a remote ser-
ver [11]. The most commonmethod to ensure the noise was caused
by the original source is listening through all the samples after-
wards. This requires a huge amount of resources because of a large
amount of data due to often necessary long-term measurements.
Also, if only noise levels are recorded, validation by listening is
not possible.

A considerable amount of manual work can be saved by auto-
matically validating sound sources. Furthermore, privacy issues
can be avoided and required network load can be largely reduced,
if the automatic validation algorithm is performed on the sensor
and only the measurement result is transferred. Previous valida-
tion algorithms on sensors have been limited to hand-crafted
rule-based systems [12]. However, a simple hand-crafted classifi-
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cation rule can hardly provide good accuracy in a complex environ-
ment, e.g. monitored target producing several types of sounds. As
another drawback, the design of a hand-crafted classifier requires
an expert for every noise monitoring scenario. The increased com-
putational capacity has made a sensor possible to classify noise
sources using a pattern classification algorithm, which is capable
of learning a sophisticated noise source classifier for an arbitrary
scenario, simply using relevant annotated recordings as training
material.

An pattern classification algorithm typically consists of a fea-
ture extractor and a classifier. Mel-frequency cepstral coefficients
(MFCCs) [13] are used as common features for a wide range of
acoustic pattern classification such as speech recognition [14]
and music information retrieval [15]. Gaussian mixture model
(GMM) [16] has been traditionally cooperated with MFCCs to
model different types of sounds. Specifically, the combination of
MFCCs and GMM has been used for various noise monitoring sce-
narios [17,18]. The use of artificial neural network (ANN) for acous-
tic pattern classification has been increasing with the development
of computing power and new training algorithms that allow utilis-
ing large amounts of training data. Some recent studies have
shown that ANN outperforms traditional GMM in sound event
detection [19–21].

Together with the smaller and cheaper computing capacity, the
breakthrough of wireless technology in the very beginning of
2000s have made possible to translate the physical world into
information [22] and given reason to define concepts like Internet
of Things and ubiquitous sensing [23]. The word ”smart” was first
used as an attribute to a sensor with an Internet access. Today, it is
more closely related to a sensor with own intelligence, some com-
putational capacity for data analysis and decision making [24].

The main objective of this study was to show if it would be pos-
sible to automatically capture only the noise from the original
source, by adding intelligence and human hearing-like decision
algorithms to the sensor. This would free the huge amount of
human resources needed to validate the noise data and improve
and representativeness of the results in environmental noise mea-
surements. An implementation of a noise classification algorithms
in a sensor will be introduced. The general concept of the noise
monitoring system is explained in Section 2 and the pattern
classification algorithms are given in Section 3. Additionally, an
Fig. 1. Block diagram of the n
evaluation of the performance of the algorithms in a case study
is shown (Section 4) and some discussion the requirements and
the future work in Section 5.
2. Noise monitoring

The proposed noise monitoring system comprises of smart sen-
sors which are connected through wireless uplink to the cloud ser-
vice. The overview of the system is illustrated in Fig. 1. The smart
sensor consist of a measurement microphone and a single-board
computer with a wireless transmission unit. To alleviate the pri-
vacy issues concerning the continuous audio capturing and stor-
age, the most of the analysis and processing is done already in
the sensor and only analysed data is transferred and stored in
the default setting. This approach will also lower the amount of
transferred data from a sensor to the cloud service, and enables
placing sensors to areas with lower quality wireless uplinks. In
the sensor, A-weighted 10-min equivalent sound pressure level
(Lp;A;600s) values are calculated continuously, and predominant
noise sources are detected within the measurement time segment.
This information is used to decide whether the actual acoustic sig-
nal is needed for further inspection in the cloud service. For exam-
ple, segments exceeding the legal maximum allowed sound level
can be saved for manual inspection. All the extracted measure-
ments are transmitted from the smart sensor to the cloud service
for further analysis. The cloud service stores the data in the mea-
surement database, and audio segments marked for later inspec-
tion are stored in the disk server. End-users access the
measurement data and analysis of the measurements through a
web-based portal.
2.1. Smart sensor

For the prototype, the credit-card-sized RPi (Raspberry Pi)
developed by the Raspberry Pi Foundation was selected mainly
due to its excellent support network and general usability. RPi1,
the first generation model was used in the prototype because it
was the only available model in 2012 when the implementation
was made. Additional functionality was added by an audio codec
(a 24-bit multi-bit sigma delta AD converter), a smart power
oise monitoring system.



Fig. 2. A prototype version back cover opened.
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management board with an uninterruptible power supply feature,
and mobile connectivity. The selection of the microphones ended
up with two models: one covering the audible range dynamics
from 14 dB to 119 dB, and another from 20 dB to 140 dB
(A-weighted).

Based on preliminary tests, solar power was selected to allow
totally wireless sensors. The electronics and batteries were built
inside a solar panel frame (see Fig. 2). Whenever the 60 W panel
gets solar energy, the batteries start charging, system is powered
up, a secure cloud service connection is established, and pre-
processed real-time noise data flow to the online service is initi-
ated. It is also possible to access the sensor unit remotely through
the online service. The batteries, when fully charged, will keep the
system running during the dark hours. The total cost of the compo-
nents is about 150 €, the solar panel being the most expensive
component, but the price could be reduced in mass production,
or using an external power source.

The sensor continuously monitors the noise by capturing 10-
min long non-overlapping analysis segments, and the equivalent
sound pressure level Lp;A;600s values are calculated for each seg-
ment. The sound source classification is used to find the noise
source likelihoods within the analysis segment. The acoustic mea-
surement values, noise source likelihoods and time-stamps are
transmitted to the cloud service. Analysis segments having
Lp;A;600s value over the set threshold are compressed with a lossy-
audio compression (e.g. 32 kbit/s MPEG-1 Audio Layer 3) method
and transmitted to the cloud service. These can be later used to
verify the noise source more accurately either with automatic
methods or by the users.

2.2. Accessing data and visualisation

The measurements are accessible through a web-based user
interface, which combines a large amount of measurements in an
easily readable format by using data visualisation and data reports.

The sound pressure level (SPL) measurements can be filtered
based on the sound source classification results to show measure-
ments for assigned to particular sound source. In the service the
measurement data is visualised in multiple ways: calendar heat-
maps, graphs, and report tables. Example view from the portal is
shown in Fig. 3.
The calendar heat-maps are used to visualise the average SPL
values over certain time span (one day, one hour) with a colour
of a calendar cell, an example of this is shown as measurement cal-
endar in Fig. 3. The heat-map collapses SPL measurements within
one hour into one number and decodes it into colours based on
location-specific SPL limits. In preliminary studies, three colours
were observed to give sufficient visualisation of measured SPL val-
ues. For the case study (see Section 4), colours are defined in fol-
lowing manner: green colour denotes SPL values under 45 dB,
yellow denotes SPL values between 45 dB and 55 dB, and red
denotes SPL value over 55 dB, the national limit for outdoor noise
in residential areas. The limits shall be adjusted in accordance with
the national law for each target. Only measurements associated to
the targeted sound class are presented in the calendar.

The measurement graph is used to visualise the SPL values
against the measurement time-stamp, an example of this is shown
in the lower panel in Fig. 3. Three type of graphs are used to visu-
alise measurement with differently assigned data: firstly showing
all SPL measurements as such, secondly showing SPL measure-
ments and sound source probability at current time interval
denoted with colour intensity under the curve, and thirdly showing
only SPL measurements assigned for targeted sound source. The
noise monitoring location specific SPL limits (same as in calendar
heat-map) are shown in the graph with horizontal lines.

In addition to the calendar and graph based visualisations,
numerical measurement reports are used to show more exact val-
ues and analysis. The reports are used to show daily, weekly,
monthly and yearly averages of the SPL measurements. Reports
include also noise descriptors such as the day-evening-night level
Lden introduced in the END [1], to give comprehensive figure of the
noise levels over longer time segments. If needed, some higher
level noise values like unbiased annoyance (UBA) [25] can be
added to be calculated.

The portal provides different level information depending on
the user account type. The monitoring site managers (system cli-
ents) can grant access for the people living close to the monitoring
site (public users), and the services provides them easily approach-
able noise measurement summaries, and possibility to add feed-
back or comments on the measurement time-line, providing
direct connection to the monitoring site management. The site
manager or a community liaison officer can use the feedback from



Fig. 3. Example view of the noise monitoring portal. In the upper right corner there is a calender selector with day view. By selecting a day, more detailed data of the day is
shown in a calendar view and in a graph view at left. The measurement calendar shows measurements assigned to the target source, and in the graph view target presence is
shown with intensity of the colour. An audio playback is shown in the lower right corner.
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the public to react noise levels and types, and reply directly to the
comments. If the commented time-stamp has a stored audio asso-
ciated to it, the site manager can also audition it in this stage. Pub-
lic access is important to make the noise monitoring transparent,
and engage the public by giving them more active role how the
monitoring results should be interpreted. This should alleviate
many negative attitudes related environmental noise and noise
monitoring. Administrative users like governmental authorities
are presented accurate measurement reports to help to follow
the average noise levels over longer time segments often used in
official noise management.

2.3. Validity of the results

Standard IEC 61672-1:2002 [26] specifies three kinds of sound
measuring instruments in two performance categories. Most of
the commercially available sound level meters conform this stan-
dard requirements. There have been attempts to integrate sound
measuring capabilities also to other instrumentation or devices,
like mobile phones [27–29]. The driving force in these studies
has been the need for spatially more representative data and fulfill-
ing the accuracy requirements of the instrumentation for standard-
ised measurements has not been addressed. The presented
approach balances between these two extremes: the goal for
design is to conform at least class 2 requirements, but still to keep
the costs low so that the number of units in any implementation
may be several times higher than using the conventional sound
level meters. The calibration of the unit is performed using a con-
ventional sound level calibrator equipped with a specially manu-
factured 1” adapter on the microphone of the unit.

Considering the uncertainty of the measurements, the fact is
that the influence of instrumentation can be considered low [30]
compared to the effect of environmental conditions [5]. The repre-
sentativeness of data increases validity of an environmental noise
measurement and this is achieved by both the increased spatial
coverage and classified noise source data.

3. Automatic detection of target sources

In the proposed automatic target source detection system,
noises are defined into two classes. Sounds propagating from the
target sources belong to a target class, whereas interfering noises
as well as silence belong to a background class. Examples of possi-
ble target sounds are plant noise and aircraft noise. Possible back-
ground noises may be caused by e.g. traffic, wind, rain, thunder,
and birds. The activity of the target sources is detected by analys-
ing continuous audio input and making binary classification
between the background and the target. The audio input is the
same as the signal used for SPL measurement, but without the A-
weighting filter.

The detection system consists of two stages: the training stage
and the monitoring stage (see Fig. 4). Acoustic models are learned
from training examples, captured audio with manual annotation,
in the training stage. The learned acoustic models are used to clas-
sify audio captured on a sensor, to detect the activity of target, in
the monitoring stage. An example of the system output is given
in Fig. 5. The training algorithm needs only annotation of target
sounds. Traffic sounds, regarded as background in 5 are annotated
to help understand the system output.

3.1. Acoustic features

Feature extraction transforms an audio signal into reduced rep-
resentation. MFCCs are used as features in the proposed system.
Mel-frequency cepstral coefficients (MFCCs) [13] have been origi-
nally proposed and widely used in speech recognition [14]. After-
wards, MFCCs have been proved to be effective in a wide range
of audio processing applications such as sound event detection



Fig. 4. Block diagram of the automatic target sound detection system.

Fig. 5. Example of the target detection output using the GMM classifier. The top panel shows the spectrogram and the second panel illustrates the corresponding annotation.
Traffic is regarded as background sound, whereas crusher and alarm are the target sounds. The third panel illustrates the target likelihood and decision threshold. The bottom
panel illustrates the detection result as the system output.
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[31–33] and speaker verification [16]. An audio signal is analysed
within short frames (e.g. 100 ms) with 50% overlap. Every frame
of signal is windowed with a Hamming window. Discrete Fourier
transformation is performed on the windowed frames to obtain
spectrum and the spectrum is wrapped into Mel scale. Logarithm
of Mel-spectrum is performed with discrete cosine transformation
to obtain Mel-cepstrum. Coefficients taken from Mel-cepstrum are
called MFCCs. The proposed method uses the same classifier for
sensors in different locations. However, the audio amplitude
changes with the distance between a source and a microphone,
which is reflected in the 0th coefficient. The 0th coefficient is usu-
ally excluded [14] to keep the features amplitude invariant. In
order to provide temporal dynamic information across adjacent
frames, deltas of MFCCs [34] are used in addition to static MFCCs.
The first-order delta (D) is called differential of MFCCs and the
second-order delta (DD) is called acceleration.

3.2. Supervised classifiers

Two types of supervised classifiers are investigated: Gaussian
mixture model (GMM) as a representative of generative classifiers
and artificial neural networks (ANN) as a representative of discrim-
inative classifiers. A GMM represents a class by a distribution of its
correspondent feature vectors [16]. The probability density func-
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tion of a GMM for an observation x is the weighted average of its
multi-variate Gaussian distribution components as

pðxjkÞ ¼
XM

i¼1

wið2pÞ�
k
2jRij�

1
2 e�

1
2ðx�liÞTR�1

i ðx�liÞ; ð1Þ

where M is the number of Gaussian components. The parameters of
the density model are collectively denoted as
k ¼ fwi;li;Ri; i ¼ 1 . . .Mg. The weight, mean and covariance matrix
of i:th Gaussian component are denoted as wi;li;Ri, respectively,

satisfying
PM

i¼1wi ¼ 1. The GMM parameters of a class are itera-
tively estimated using the training data with the expectation max-
imisation (EM) algorithm. Classification can be made using GMMs
by outputting the class whose GMM gives the highest likelihood
on a input vector x.

An ANN is used to estimate a function that yields desired out-
puts with given inputs [35]. The parameters of an ANN are esti-
mated using training examples. A training example consists of an
input feature vector x and a target vector y. When an ANN is used
as a classifier [21], the target output is typically a vector y with the
size of C, the number of classes. Given the feature vector x from
class i, the target vector entry yi is set to 1, whereas other elements
in target vector y are set to 0. Thus, the output of an optimised ANN
classifier is interpreted as the activity indications of C classes of
sound events. The activity indication is later called likelihood, since
it is used in the same way as estimated likelihood in the GMM,
though the indication is not a probability measurement. In the pro-
posed system the multilayer perceptron (MLP) [36], which is a
basic type of ANN, was used.

Let us denote input layer as h1 ¼ x and the values of kth layer as

hk. The values of the next layer hkþ1 is calculated as

gk ¼ Wkhk þ bk
; 2 6 k < L ð2Þ

hkþ1 ¼ FðgkÞ; ð3Þ

where Wk 2 RSk�Skþ1 is the weight matrix between layer k and layer
kþ 1; Sk being the number of neurons in layer k. The bias vector of

layer k is denoted as bk, which can be considered as the weights for
an additional all one’s input vector. An activation function F is the
applied element-wise on the linear transformation output. L is the
total number of layers in the ANN. In the developed system, maxout
function as activation function for hidden layers and logistic sig-
moid function for output layer was used. Maxout is an unbounded
function whereas sigmoid function ranges between 0 and 1. It has
been shown that using two maxout layers with enough neurons
can approximate any continuous functions [37]. In the optimisation,
a cost function is a measure of difference between the obtained
neural network outputs and target outputs. Kull-Leibler divergence

is used as cost function and the parameters, weight matrices (Wk)

and bias vectors (bk), are optimised using the stochastic gradient
descent algorithm.

3.3. Training and monitoring

Supervised learning requires a set of training examples, i.e.,
audio signals with manual annotations, at the training stage. Fea-
ture vectors of target class are derived from the time segments
annotated as target sounds, whereas all other frames are used to
represent background class. The extracted features (MFCCs) are
collected for each class according to the annotations. When GMM
is used, the features are used to estimate the feature distributions
of each class. When ANN is used, the target outputs are ½1; 0� and
½0;1� for feature vectors corresponding to the background class
and the target class, respectively.
At the monitoring stage, a detection is made in one second non-
overlapping segments. For each class, a score is computed as the
sum of log-likelihoods (the logarithm of the likelihoods) of each
frame in the corresponding second. The target likelihood in Fig. 5
is calculated as the score of target class divided by the sum score
from all classes. The target sound source is detected as being active
when the target likelihood is over a threshold (default value 0.5),
otherwise inactive. The threshold can be tuned in case that preci-
sion is more important than recall, or vice versa. The precision
and recall are later introduced in Section 4.3. Fig. 3 illustrates the
noise portal that represents the estimated target activity in long
term (1 h), taking majority vote from the activity outputs of corre-
sponding seconds.
4. A case study: rock-crushing plant

A case study was made on the noise measurement of a rock
crushing plant – a typical environmental noise assessment with
nearby habitation. The feasibility of the proposed concept was
evaluated with one sensor node next to the plant. The plant has
regular working hours, thus the reliability of the target activity
detection could be easily verified.

4.1. Measurement setup

The audio data was captured near a rock crushing plant (Fig. 6).
The location of the sensor is indicated by a red triangle. The loca-
tion of the nearest habitation house is indicated by the blue square.
The most prominent sound sources in the plant are two rock-
rushers denoted as red circles: a fixed rock-crusher and a mobile
rock-crusher. The distance between the sensor and the fixed
rock-crusher was about 280 m measured from their GPS coordi-
nates and the distance between the sensor and the mobile rock-
crusher was about 500 m. Even though the mobile rock-crusher
is able to change its position, it was stationary during the case
study. Beside the rock-crushers, another significant type of a target
sound was made by lift-trucks, which feeded rocks to the crushers
and distributed the produced stones. The sensor was located close
to a road, near a forest.

4.2. Captured noise data

Three minutes of audio was continuously captured every
10 min, making a total of 432 min for each day. All types of noise
generated by the working activity of the plant was collectively
defined as the target class, including rock crushing, lifting-truck
sounds, and alarm sounds from the machinery. On the contrary,
traffic noise coming from the road and the noise generated by
the wind and the trees were two significant types of background
sound sources. Example sound spectra of rock crushing, a car pass-
ing, and wind is given in Fig. 7.

Two days of audio data were annotated and used to develop and
evaluate the target detection system. The data was manually anno-
tated (like in Fig. 5). The rock crushing activity is rather continuous
and long-lasting, which made the annotation easy in most cases. In
a few cases, the onset and offset of the target sound were hard to
determine due to overlapping sound sources. In these cases, a 0.4
s uncertainty was associated to the onset or offset.

4.3. Evaluation setup

A quantitative evaluation was made on the target noise detec-
tion performance with temporal resolution of one second. A two-
folded validation, swapping the data of day 1 and day 2 for training
and testing, was used. A detection output, either active or inactive,



Fig. 6. Map of the rock crushing plant that was the target of the case study.

Fig. 7. Example sound spectra for rock crushing, a car passing, and wind from left to right.
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was obtained through the proposed system for every one-second
segment. The ground truth of a one second segment was seen as
a target, when the target sound lasted longer than 0.1 s according
to the annotation, otherwise judged as background noise.

The target source detection performance was evaluated using F-
score [38], which is often used to evaluate binary classification per-
formance. The F-score is calculated as a harmonic mean of preci-
sion and recall. Precision is the fraction of the predicted target
activities that are correct, whereas recall is the fraction of the
actual target activities that are predicted.

In order to study the feasibility of real-time execution and to
find the most relevant factor to computation time, the computa-
tion time was evaluated for feature extraction and classification.
The target detection algorithm was implemented in C++ and was
run in a sensor node. The file read/write, SPL measurement, feature
extraction, and classification process takes 51 s for a one minute
signal, fast enough for real-time execution (85%). The sensor imple-
mentation was used as a benchmark and computation time of
other feature extractors and classifiers were estimated using a
Python implementation, assuming that the computation time had
always the same proportion between the implementation in the
sensor and in any other computer.

The developed classifier was imported to the sensor and it con-
tinuously performed noise measurement and source classification
for 50 days. A reliability evaluation was made by examining the
results transmitted to the web portal.

4.4. Evaluated classification systems

The acoustic features (MFCCs) from an audio signal which was
sampled at 22,055 Hz. The audio signal was further analysed at a
frame length of 100 ms with a 50% overlap between neighbouring
frames and windowed with a Hamming window. 4096 point dis-
crete Fourier transform and 40 Mel bands were used. Mel cepstral
coefficients from the first to kth were used as features. The number
of coefficients (k) was studied as a variable. In addition to static
MFCCs, the deltas were calculated using four preceding frames
and four succeeding frames to represent temporal dynamics. The
features were normalised to zero mean and unit variance was
based on the statistics of the training dataset.

A single variable was changed at a time from the default setup
to test the variable. Four variables were tested: the number of coef-
ficients, the temporal dynamic features (deltas), the time-domain
filters, and the frame length. The variable value that achieved the
best performance was used to determine the next variable. To eval-
uate the performance of the feature extraction variables, a GMM
with M ¼ 16 components was used as a classifier.

The best achieving feature extraction setup was used to evalu-
ate the classifiers. GMMs with a different number of Gaussian com-
ponents M ¼ f1;2;4;8;16;32g in Eq. (1) using diagonal covariance
matrices and ANNs with two hidden layers, each having
f10;30;50;100g neurons, were tested. Python toolboxes scikit-
learn and pylearn2 were used in the implementation of the GMM
classifier and the ANN classifier, respectively.

4.5. Results

The parts of the system were evaluated to select the features
and the classifiers. A quantitative evaluation of the results is shown
in Table 1. The selected values are shown in bold font and the com-
putational requirements for the feature extraction is expressed as a
time ratio to the estimate of real-time. Besides the detection



Table 1
The results of the evaluation of the acoustic features.

Studied variable Variable value F1-score Feature extraction
time

Number of coefficients 8 0.926 0.51�
13 0.927 0.51�
20 0.927 0.51�

Temporal dynamics MFCC 0.927 0.51�
MFCC+ D 0.931 0.51�
MFCC+ D + DD 0.917 0.51�

Time-domain filter No filter 0.931 0.51�
Pre-emphasis 0.885 0.54�
A-filter 0.930 0.64�

Frame length 50 ms 0.898 0.99�
100 ms 0.931 0.51�
200 ms 0.914 0.27�

Table 2
The results of the evaluation of the classifiers.

Classifier Parameters F1-score Classification time

GMM M = 1 0.795 0.10�
M = 2 0.870 0.10�
M = 4 0.925 0.10�
M = 8 0.928 0.11�
M = 16 0.931 0.12�
M = 32 0.934 0.14�

ANN 10 � 2 0.904 0.10�
30 � 2 0.934 0.10�
50 � 2 0.938 0.11�
100 � 2 0.938 0.12�
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performance, the estimated computation time (the feature extrac-
tion time) is shown for the sensor implementation compared to
real time.

A small effect to the classification performance was found by
changing the number of the cepstral coefficients. In Table 2, M
denotes the number of Gaussian components used in a mixture
model and the parameters of ANN marked as a� b means a neural
network with b hidden layers and a neurons per layer. 13 coeffi-
cients were selected, because those gave the same performance
as using 20 coefficients and a smaller number of coefficients makes
classification faster. The best performance among the studied tem-
poral dynamic feature combinations is gained by using MFCCs with
only first-order delta. Adding a second-order delta did not give any
improvement, perhaps because a rather long frame length
(100 ms) was used and the first-order deltas already covered
500 ms temporal dynamics. Based on the results, imposing time-
domain filters (a A-weighting filter [39] and a pre-emphasis filter
[16]) is not justified. The frame length is clearly the key factor con-
tributing to the computation time. The frame length of 100 ms is
the best choice, which leads to the best classification performance
and is capable in real-time execution.

ANN achieves the best F-score and takes the least time to com-
pute. However, the difference between ANN and GMM is rather
small. The estimated classification time does not largely depend
on the number of the model parameters. This suggests that it takes
the most time for overhead operations such as copying the fea-
tures, when compared to computing likelihoods with the classifier.
This computation time could be further reduced with a better
implementation.

The computation in the sensor includes reading the audio
stream, SPL measurement, feature extraction, classification, and
transmitting results. A feasible implementation would use less
than 70% of real-time for feature extraction and classification. This
has to be taken into account when choosing the features and the
classifier. The leading factor of the computation time in the source
classification algorithm is the audio analysis frame length, which
determines the number of frames to process. In comparison, the
computation time is not much affected by other the factors such
as the neural network topology.

To evaluate the reliability of the proposed system, the hour-
level measurement and detection results visualised in the web por-
tal (Fig. 3) were examined. The sensors continuously performed
noise measurement and source classification for 50 days and were
able to transmit the results of every single hour, though some
results were received with a delay of hours. It was assumed that
the work in the plant could begin one hour later and end one hour
earlier than the regular working hours (Mon-Fri, 8:00–15:00).
With this assumption, almost all the target detection results were
correct (1198/1200).
4.6. Required amount of annotated recordings

In the training material, about four hours of audio, the total
number of feature vectors was about 300 000. A reduced size of
the training material was tested by using every second or every
fourth recording in time order. The learned classifiers achieved F-
scores 0.913 and 0.924. Thus, it is sufficient to use about one hour
of annotated recordings to achieve a decent classifier. When using
the first half or the second half of a day data for training, the
learned classifier achieved less than 0.8 F-score. This suggests that
the training material should contain recordings from different
times of a day to cover the most of the variability of the environ-
mental sounds.

In environmental sound classification, a training set with a few
hours can currently be regarded as a large dataset. For example,
UrbanSound8K [40] contains one hour for each of 10 classes. As
an example of small datasets, ESC-10 [41] contains at most 200 s
audio for each of 10 classes.

In the reliability evaluation, it was shown that the system was
able to do accurate hour-level classification in varying weather
conditions by using annotated data of one day captured in good
weather conditions. However, annotated recordings in more
diverse conditions are typically required to achieve a similar accu-
racy as obtained in the quantitative evaluation with one second
temporal resolution.
5. Further analysis and future work

5.1. Selection of classifier

The performance of the classifiers GMM and ANN was practi-
cally the same in the evaluation. The selection between GMM
and ANN should be based on other aspects. Adding a new class
to the GMM classifier is easier, since statistics of the existing
classes stay unchanged when a new class is added. In contrast to
the GMM, the ANN has to re-estimate all the parameters to intro-
duce a new class. Another benefit of using the GMM is that it is
easier to adapt so that the classifier could adapt to small changes
of the environment over time, using maximum a posteriori [16]
algorithm. Typically ANN outperforms GMM when the number of
classes is large. The number of the ANN parameters does not signif-
icantly increase with the number of classes, whereas the number of
GMMs depends linearly from the number of classes. For example,
ANN and GMM used approximately the same time in the computa-
tional time test for the binary classification. If there were ten
classes in the same setup, the classification with ANN would have
been about five times faster than GMM. In the one-minute audio
test on a ten class case, it took 0.32 s for the ANN classifier and
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1.48 s for the GMM classifier using a Python implementation in a
desktop computer.

5.2. Extension to monitoring multiple target classes

The same algorithm could be used in noise measurement sce-
narios involving multiple noise types. In addition to the rock crush-
ing case study described above, a preliminary study on a set of
noise samples from the port of Dublin was made. In this case, a
classification system with multiple noise source classes was built.
There are many kind of sound sources in the port area, some of
them being also present in the neighbouring environment. The
noise data was annotated with an interactive clustering method,
by which a cluster of sounds were annotated or skipped at once.
With this method, the annotation was fast but less accurate.

Ten classes of sound sources were present in the evaluation and
the average recognition rate was 81%. The ten classes were alarm
sounds, bird chirping, mild fans, strong fans, traffic noise, engine
noise, footsteps, musical concert, raining, and wind blocking the
microphone. It should be noted that the results might be optimistic
since the segments not clearly belonging to any of the classes
might have been skipped in the annotation with interactive
clustering.

5.3. Sensor network

In the future, all the data from a large number of various net-
worked sources, already available or from the autonomous smart
sensors, will be centralised to a cloud service, where the data is
accessible to a various groups of people: public, authorities, and
to the dedicated users. The data will be made available for all the
purposes it is needed: mapping and monitoring of emissions, noise,
aerosols etc. It is possible to get accumulated standardised descrip-
tors and conventional reports for various purposes. Also, it is pos-
sible to comment the visualised, and, possibly auralised, results on
a time line to make feedback possible to the responsible party.

To increase the validity of the classification, multiple sensors
could be used to also analyse the direction of arrival of sounds
[42]. In future, the final outcome of an environmental noise assess-
ment will be an annoyance map of an area, reported with the level
of uncertainty. Further, when the needs go beyond the current leg-
islative values and limits, it is possible to calculate higher level
descriptors like unbiased noise annoyance (e.g. UBA [25]), or some
other psychoacoustical descriptors at the sensor. The solar pow-
ered sensor was optimised for average summer conditions, so that
the batteries keep the system running at the night time. However,
during a long period when the direct sunlight is limited, or does
not exist at all (e.g. winter north of Arctic Circle), external power
is needed.

6. Conclusions

It was shown that environmental noise monitoring could be
enhanced by separating between the target and interfering noise
sources and implementing this approach to the sensor level. Also,
an autonomous and a low-cost sensor implementation with a con-
nection to a cloud service was introduced.

A credit-card-sized single-board computer, Raspberry Pi, was
found to be powerful enough for automatic source classification.
A solar-powered sensor was demonstrated to allow measurements
in locations without power outlet.

The activity of the noise source was detected by making a bin-
ary classification between the target and the background. Mel-
frequency cepstral coefficients were used as acoustic features
and the classification was made using a supervised classifier
(GMM and ANN), learned from annotated audio recordings.
The performance of the developed methods was evaluated in a
rock crushing plant case study. The quantitative evaluation showed
that the noise source classification using the proposed approach
was accurate enough: on a temporal resolution of one second, F-
score of 0.938 with the best investigated classifier was achieved.
The system was run for 50 days and the results of the developed
classifier matched well with the regular working hours of the rock
crushing plant.

Also, a cloud service and a noise portal were introduced. The
sensors transmitted the results to the cloud service and the portal
was for visualisation of the results, statistical analysis, and data
archiving. This approach makes it possible to extend the system
towards noise management and, due to the minimal cost per sen-
sor unit, towards real-time noise mapping with real measured
data. By using this approach, the reliability, validity, and the spatial
coverage of environmental noise monitoring will be increased.
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